
EFFECTS of CONVECTIVE 
BLOB TRANSPORT on 

REACTORS
Reference:
“Hollywood”

• Subject of submitted FED paper: summary here
• M. Kotschenreuther (IFS) in collaboration with 

Tom Rognlien (LLNL), Prashant Valanju (IFS)
• New: possible ITER implications discussed here



Our Physics Understanding of SOL 
Transport has Changed

• Pioneering experiments at C-Mod, DIII-D, NSTX:  

large radial convective transport of plasma blobs

• Theoretical investigations: blobs of plasma should 

rapidly convect to the main chamber wall

• IFS-LLNL collaboration: investigation of potential 

REACTOR effects of convection for the first time



Serious Effects of Blob 
Convective Transport

• First Wall Erosion 
– A concern mentioned in the literature, but 

heretofore not estimated for reactors 
– Serious implications found here

• Helium Pumping
– Not discussed in literature, but: far SOL 

transport disproportionately effects helium 
removal (negatively?)--work in progress



2-D Simulations using UEDGE 
• Previous state of the art: use constant empirical diffusion

coefficient for reactor simulation
• But large convection appears essential in far SOL
• To estimate reactor effects: use empirically motivated 

convection model 
– similar to that used to simulate present experiments
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Several Convection Profiles Tried for 
Reactor to Obtain Best SOL Profile Fit

• Desire: simulated reactor SOL density profile to match SOL 
profile characteristics found in present experiments

• Quantitative profile characteristics checked with experiments:
1. Ratio of density in the SOL (d/a=0.04) to separatrix density
2. a/Density scale length at d/a = 0.04 
3. Convective flux at d/a = 0.04

• Four convection profiles tried:
A)  10 m/s to 100 m/s (found to give BEST FIT to data)
B)  10 m/s to   50 m/s (reduce convection near wall)
C)   5  m/s to 100 m/s (reduce convection near plasma)
D)   0  m/s to     0  m/s  (no convection)

• Find: Case A gives best profile match: reducing the convection 
(B and C) results in a poorer match to characteristics 1,2 and 3

• Case A is also best fit of convection used to model present expts.

a = minor radius

d/a = 0.04 ~ first wall ARIES



Why Wall Erosion Estimates Based on 
Models w/o Convection are Likely to be Low

• Standard SOL transport model: constant diffusion only
• Probably underestimates plasma-chamber interaction by ~ 30
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Density Ratio Comparison

• Find: a strong relationship 
between the density ratio in 
SOL and the Greenwald ratio 

• For high Greenwald ratio (like 
reactors), density in the far 
SOL is high => STRONG 
WALL INTERACTION

• Case A is most consistent 
with experiments

• Case D without convection 
does not match experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Normalized Density

de
ns

ity
 ra

tio

L-mode
expts
H-mode
expts
UEDGE
reactor B

C

D

A

Density Ratio = nd/a=0.04/ nsep



SOL Density Scale Length 
Comparison

• Find: SOL density decay 
is slow in experiments, 
and tends to be flatter at 
higher density

• Case A most consistent
• Case D without 

convection: density 
profile does not match 
experiments 0.1
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Wall Flux Comparison

• Experimentally estimated 
plasma flux to the wall has a 
large scatter

• Flux trends are described by 
the expression of Labombard: 
ΓL=1021(ne/1020)2

• Case A most similar to data
• Case D without convection: 

under-estimates flux by nearly 
two orders of magnitude 0.01
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Kinetic Neutral Code NUT evaluates the 
hot CX neutral flux to the wall

• Wall erosion (for W) is dominated by hot CX neutral flux

• The fluid treatment in UEDGE cannot evaluate this

• Thus: the kinetic neutral code NUT is used

– NUT: benchmarked against experimental data on TEXT & C-MOD

• The plasma profiles and neutral source found by UEDGE are input into 
NUT

• NUT computed the energy distribution of CX neutrals back the the wall

• The sputtering coefficient is integrated over the CX neutral 
distribution from NUT to obtain the wall sputtering



With Realistic Convection: 
Strong First Wall Erosion for W

• Most sputtering-resistant material: Tungsten

• Without convection: 0.17 mm/yr

• With convection: 0.61 mm/yr

– Initial rough estimate: small prompt re-

deposition (ionization outside sheath, sputtered 

gyro radius)



Consequences of Tungsten Erosion
• Large dust generation 

– ITER: ~10% of sputtered material forms micron dust

– With convection: ~ 340 kg/yr dust after 2 years

– LOVA dosage marginally exceeds no evacuation limit (even 
with 99% filter, -adapting analysis of Merril et. al.)

• High Z Plasma Impurities preclude ignition
– C-Mod has high-Z wall: H-mode screening factors 1-10%

– ASDEX ~ 1%    UEDGE  ~ 10%

– This range of screening can have unacceptable consequences:

– H-mode ignition precluded due to radiative losses for 
~ 0.5  1.0 % screening factor



Results for Liquids
• Flibe, LiSn, Sn considered

– Obviously dust, structural erosion are not issues
• For low Z PFCs (Flibe, LiSn):

– Plasma: much more tolerant of Low Z impurity 
• Acceptable screening factor ~ 5 % 
• Recall experimental values are ~ 1 - 10 %

– Sn walls
• High Z: acceptable concentration slightly higher than 

W, but sputtering also slightly higher
• Required screening factor ~ same as W: very 

worrisome



Implications
• Better physics understanding of SOL transport 

required:  could be show-stopper
– Plasma-wall interaction: structural erosion, dust
– Impurity transport and core plasma contamination

• Alternative design concepts required
– Low-Z liquid walls

• Low Z liquids => acceptable plasma impurity level 
• Continually replenish wall => no structural erosion
• Even a thin wetted surface may suffice

– Field line extraction divertor 
• Low density SOL operation to minimize SOL convection



Beyond FED paper
• Erosion near edges of protrusions and cavities

– Near corners, projections: blobs will dump plasma much more strongly
– Recycled neutral source many times higher => Local erosion rates several 

times higher than for flat wall
• Wall next to ICRF antennas, and antenna itself
• Wall near blanket test modules which are inset by ~cms

– Several mm/year W erosion could be structurally unacceptable in reactor

• Assuming ITER edge is the same as ARIES RS calculation
– 10,000 shots, 400 sec => ~ 3 mm Be erosion for flat wall 
– Several times higher (?) near protrusions and cavities
– ITER Be PFC is 10 mm thick

• Possible reactor relevant design solutions (?)
– Low-Z liquid wetted wall near edges?
– Extraction divertor to run in SOL regime with low blob transport?



Another ITER Issue: Main Chamber 
Erosion from ELMS

• Experiments: ELMs cause a “super blob” in the SOL (?)
– Particles expelled in ELMS go to first wall, not divertor
– This is recognized as a possible problem for ITER

• Estimate time averaged flux:
– ~ 3% particles lost per ELM ( similar to energy)
– ~ 1 ELM / second
– Implied average flux ~ 1018/m2sec

• Estimated flux from steady state blobs ~ 1021/m2sec
• Thus: continuous small blobs (considered above)  can give 

much higher average erosion
• The seriousness of the continuous blob erosion problem 

appears to be under-appreciated



Future Direction: 2 ½ D Simulations of Blobs 
Coupled to Neutral Calculation

• 3 D simulations are desirable but very expensive (BOUT)
• Blobs can be described fairly well with 2 D equations 

– Average along field lines: Krasheninnikov, D’Ippolito, etc.
• Different “2D” description than implemented in UEDGE
• D’Ippolito found agreement with NSTX blobs with 2D model

• Thus: couple 2-D turbulence code (much faster) to NUT
– With NUT, neutral source terms determine SOL profiles 
– SOL profiles probably help determine turbulence/blob strength
– Hot CX neutrals determine sputtering 

• Model parallel conduction/convection from mid-plane to
divertor region semi –analytically: the “1/2 D”

• 2 ½ D simulations MUCH less expense than 3 D => can 
directly simulate to steady state of the average fluxes



Future Direction: 2 ½ D Simulations of Blobs 
Coupled to Neutral Calculation (Continued)

• This provides a self – consistent physics based model 
without empirical fitting parameters

• It is fast enough to be used to regularly
– E.g to benchmark with experiments
– To perform parameter scans and trends, give insight
– Applied to ITER and reactors to estimate erosion

• Could also be used to examine dynamics of a large 
initialized blob 
– simulating one produced by an ELM (?)-present ITER issue

• May be fast enough to be coupled to an edge sheath model 
to compute impurity redeposition (? – next slide)

• Different approach than UEDGE/BOUT- comparisons 
obviously  would be very important



Re-deposition of Sputtered Impurities Can be 
Strongly Modified by Blobs

• Blobs in the far SOL imply
– Plasma density near/at wall has large variations
– Regions of high density : convecting rapidly toward the wall
– Regions of low density  : convecting rapidly toward the main plasma

• The spatial scale of the density variations >> distance for a sputtered atom to 
be ionized 

• Thus, consider the fate of impurity sputtered by a hot CX D neutral
– Sputtered wall atoms in regions of low plasma density ionize in the low density 

plasma
– The plasma impurity is now rapidly convected back to the plasma
– Also, sheath in regions of low density plasma: less prompt redeposition

• Thus: impurity re-deposition could be much smaller than in present models
• Bulk plasma contamination could be higher (recall W may preclude ignition)
• We would like to couple 2 ½ D simulations above with a rough sheath model 

(as time and funds permit)



ICC Grant Awarded to Design Field Line 
Extraction Divertor

• Field line extraction divertor: extract separatrix field lines outside the TF 
coils with novel magnet designs (VERY different coils from bundle divertor)

• Previous work (APEX, 2002 APS invited talk) demonstrates this is possible 
with very low field ripple at the plasma (<< 1%)

• Have Received ICC grant to use magnet design tools developed for NCSX 
Compact Stellarator
– Highly sophisticated algorithms optimize coils for 3-D magnetic fields
– Code produces much simpler, more practical magnet designs for 3 –d 

problems
– Optimizations can include arbitrary engineering and physics properties 

(plasma ripple, coil stress, clearance, complexity, heating, etc.)

• Thus, a radically different divertor solution may be practical
– Interest from CDX-U, Pegasus and NSTX to develop retro-fit coils
– Large flux expansion outside TF coils could enable low recycling

divertor (without Li)- high edge T, low edge n
• Regimes of low blob transport, high core confinement
• Edge conditions more compatible with AT transport barrier modes (DIII-D)



Conclusions
• Estimated main chamber erosion is strongly increased by convection

– Plasma impurities for W wall may preclude ignition

– Structural erosion near corners/edges could be unacceptable

– Large dust generation may be problematic (regulatory/social acceptance)

– Issue for future: present models for impurity contaminations and helium 

exhaust may need to be substantially modified (more pessimistic ??)

• Need better models of SOL turbulence & simulations

– More physics based models of SOL blobs & SOL impurities

• Unconventional alternatives may be required fusion’s feasibility

– Low Z liquid walls (even just a thin wetted surface for erosion?)

– Field line extraction divertor to enable reactor operation in regimes 

with high SOL T, low SOL n
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